
Formal Verification of Asymptotic Complexity Bounds
for OCaml Programs

MPRI M2 Internship Report, March-August 2015

Armaël Guéneau, supervised by François Pottier and Arthur Charguéraud

Inria Paris-Rocquencourt

General context

Program verification covers a wide range of techniques, frameworks and tools, interested in proving
various properties about real world programs. Beyond basic safety properties (e.g. memory safety),
program verification can be used to establish full functional correctness, meaning that, for every
input, the program always behaves as expected. Yet, full functional correctness does not capture all
the desired properties of a program. In particular, it does not give any form of guarantee on the
execution time of the program. How useful would a mechanically-correct program be, if it does not
delivers its output within reasonable amount of time?

Estimating the real-life execution time of a program can be quite difficult given the complexity and
underspecification of modern hardware, operating systems or even compilers. Without going that far,
researchers have investigated the possibility of formally establishing asymptotic complexity bounds
for programs. For example, some tools, such as RAML by Hoffmann and Hofmann [10], are capable of
automatically inferring asymptotic bounds, but only for restricted classes of programs. Other lines of
work (Danielsson’s Thunk library [7], Charguéraud’s CFML [4,3]) allow to establish execution cost
bounds for arbitrary complex programs, thanks to the support of a proof assistant. However, they do
not support reasoning on asymptotic complexity using Landau’s big-O notation.

Problem studied

In a recent publication, Charguéraud and Pottier [5] extend earlier work on CFML with the notion of
time credits in order to allow establishing bounds on the execution costs. They applied their approach
to verify an OCaml implementation of Tarjan’s union-find algorithm. The proof covers two aspects:
first, functional correctness, but also asymptotic complexity. For example, one of the results of the
paper is that the link function runs in 𝛼p𝑛q ` 2 elementary steps, where 𝛼 is the inverse of the
Ackermann function.

Working with explicit cost functions, as opposed to using the big-O notation, although it was
manageable for the union-find data structure, quickly becomes impractical in general. Cost functions
such as 𝑛2 ` 3𝑛 logp𝑛q ` 4𝑛` 5 are already hard to read, while we could simply write 𝑂p𝑛2q instead.
The problem gets even worse when multiple variables are involved, when one needs to write 𝑛2ˆ𝑚`
3𝑛𝑚` 3𝑛` 6𝑚` 5 logp𝑛q ` 2 logp𝑚q ` 5 logp𝑛q logp𝑚q ` 8 instead of just 𝑂p𝑛2 ˆ𝑚q.

Reasoning with big-Os is also more modular: when proving a complex program that uses various
auxiliary functions, big-O bounds allow the implementation details (and the exact cost) of an auxiliary
function to change, as long as its asymptotic bound remains the same.

Another interest of formalizing big-Os is that it enables us writing and proving high-level theorems
about asymptotic complexity, like the very handy Master Theorem [6]. The master theorem gives
asymptotic bounds for broad classes of cost functions that satisfy a recurrence relation. For example,
if 𝑇 is a cost function satisfying 𝑇 p𝑛q ď 𝑇 pr𝑛2 sq ` 𝑇 pt𝑛2 uq ` 𝑎 logp𝑛q ` 𝑏, then the master theorem can
be applied, and tells us that 𝑇 admits a 𝑂p𝑛q bound.

To sum up, using big-O notation brings at least four major benefits: more concise bounds, rea-
soning closer to paper proofs, improved modularity, and convenient high-level theorems.

2

Proposed contributions

During my internship, I developed a Coq library to formalize the big-O notation, I extended CFML
to integrate big-O notations in specifications, and I considered two significant case studies to validate
the approach. If Landau’s big-Os are not particularly reputed to be a complex mathematical object,
we will see that they do hide some subtle aspects, and tend to be manipulated in quite informal ways,
as described in section 1. The resulting tool, namely CFML with credits extended with support for
big-O notation, appears to be the first proposal of a tool that allows to establish asymptotic bounds
on the execution cost, for arbitrarily-complex programs.

Arguments supporting their validity

To demonstrate the features and usage of our library, we selected some OCaml programs that we
proved correct, as case studies. After basic introductory examples, we study the implementation of
two data structures, which constitute self-contained but real-world examples. Each structure features
a particular challenge, allowing us to demonstrate the strengths of our library on these aspects. More
precisely, we present (1) a basic example of constant-time function manipulations (in 4.1); (2) a basic
example of recursive program with exponential running time (in 4.2); (3) implementation of dynamic
arrays, featuring amortized 𝑂p1q costs (in 4.3); (4) implementation of binary random access lists,
with 𝑂plogp𝑛qq costs (in 4.4).

These case studies validate our work as they present, first, concise specifications, thanks to appro-
priate notations. A specification which was using e.g. an explicit cost “3 logp𝑛q`2” can now introduce
a 𝑂plogp𝑛qq abstract cost function 𝐹 , and use “𝐹 p𝑛q” instead. Secondly, our specifications compose
well, justifying big-Os modularity. Finally, the proofs are of reasonable size, compared to the proofs
of functional correctness only: adding the complexity analysis does not increase the total size much.

Summary

During the course of this work, we had to overtake the following challenges: (1) understand the
implicit assumptions hidden behind the big-O notation; (2) formalize the definition of big-O in Coq,
including these implicit assumptions; (3) develop concise notations for specifications to include big-O
expressions (which is challenging due to the fact that the underlying constant needs to be quantified
outside of the specification); (4) develop lemmas and tactics for automating to a large degree the
process of manipulating concrete cost expressions and consume time credits; (5) carry out several
case studies to demonstrate the interest and practicality of the approach—successfully addressing the
challenge described by the internship proposal.

Our formalization also tackles various subtleties and difficulties inherent to the manipulation of
big-Os, which are shed to light in the “Challenges” section (section 1).

Future work

In future work, we would like to improve the degree of automation, possibly through the development
of a specific Coq plugin. In particular, we would like to enhance the degree of inference achieved
by the tool, in order to reduce the number of places where the user needs to provide concrete cost
functions explicitly.

Besides, our current work does not use the master theorem. In future work, we wish to prove the
master theorem (the work of Drmota and Szpankowski [9] offers interesting prospects) and demon-
strate its practical interest through the verification of recursive algorithms and data structures.

3

1 Challenges

How are big-Os defined in the first place, in paper proofs? Consider a program function p that expects
as argument a natural number n. Let 𝑓 be the concrete cost function for p, that is, such that 𝑓p𝑛q
describes the number of execution steps performed when running p(n). Common practice is to write
that p is 𝑂p𝑔p𝑛qq, as a lightweight notation to mean that the cost function of p, namely 𝑓 , satisfies
𝑓 P 𝑂p𝑔q. Recall that “𝑓 P 𝑂p𝑔q”, following the standard definition, stands for D𝑐, D𝑛0,@𝑛 ě 𝑛0, 𝑓p𝑛q ď
𝑐ˆ 𝑔p𝑛q.

Formalizing this definition in a proof assistant may appear to be only a matter of writing down
the right definitions and lemmas. This is partly true, but it also appears that the big-O notation is
often used in a quite informal way: formalizing it presents in fact multiple challenges. In this section,
we describe these challenges, which our formal development will need to tackle.

1.1 Challenge 1: binding variables

Informal big-O bounds are often written without explicitly binding the variable(s): we tend to write “p
is 𝑂p𝑛2q”. In reality, the 𝑂pq relation is defined on functions, not expressions with unbound variables.
Therefore, a first step is writing “p is 𝑂p𝜆𝑛.𝑛2q” instead.

1.2 Challenge 2: existential quantifications

A second problem is that the big-O notation hides a quantification on the concrete cost function.
When we write “p is 𝑂p𝜆𝑛.𝑛2q”, we actually mean: “there exists a concrete cost function 𝑓 such that
𝑓 P 𝑂p𝜆𝑛.𝑛2q and the execution of p(n) takes exactly 𝑓p𝑛q steps”. Even though it might be hidden
behind definitions and notation, the quantification of 𝑓 must somehow appear in the formal definition,
outside of the Hoare triple describing the semantics of p.

Actually, if such syntactic sugar comes handy, it tends to make some wrong paper proofs harder to
detect syntactically. To illustrate this point, consider the program below and an obviously-incorrect
asymptotic complexity claim for it.

let rec loop n = if n <= 0 then () else loop (n-1)

Lemma 1 (incorrect). The asymptotic complexity of function loop is 𝑂p1q.

Proof. (flawed, but not so obviously).
By induction on 𝑛:

– when 𝑛 ď 0, the call to loop terminates in 𝑂p1q, there fore the cost is 𝑂p1q;
– when 𝑛 ě 0, the cost of loop(n) is the cost of loop(n-1) plus 𝑂p1q. By induction hypothesis, the

cost of loop(n-1) is 𝑂p1q. Since 𝑂p1q `𝑂p1q “ 𝑂p1q, we conclude that the total cost is 𝑂p1q. [\

The syntax of big-Os does not make obvious that the proof is wrong: here, it is because of an
invalid quantifier permutation, between the universal quantification on 𝑛, and the hidden existential
quantification on the cost function, which must be instantiated before entering the induction. The
circular definition attempted here boils down to an incorrect usage of reasoning rules about quantifiers,
which would be rejected by a formal proof system. Cormen et al. [6] also mention this kind of mistakes
when reasoning inductively with big-Os.

So, the first challenge is to clarify the location of the quantifiers associated with the use of big-
Os in specifications, while nevertheless retaining as much as possible a lightweight presentation, in
particular avoiding an explicit quantification on the concrete cost function.

4

1.3 Challenge 3: monotonic cost functions

Paper proofs assume extensively that cost functions are non-decreasing, without mentioning it ex-
plicitly. For example, let p(n) be an OCaml program which calls some auxiliary function aux, of exact
cost 𝑓𝑎𝑢𝑥. A common pattern is calling aux on smaller data, but wanting to express its cost depending
on the main parameters: e.g. let p n = ... ; aux k; ..., where 𝑘 ď 𝑛. We would like to be able
to promptly conclude that, as 𝑘 ď 𝑛 and by monotonicity of 𝑓𝑎𝑢𝑥, the cost of aux k is bounded by
𝑓𝑎𝑢𝑥p𝑛q, which is more useful for p’s specification as n is a parameter of p, while k is an internal
variable.

Sometimes however, exact cost functions are not non-decreasing. As a very simple example, con-
sider loop’ defined as follows: let loop’ n = if n = 2 then loop 10 else loop n. Because of a spe-
cial case for the input 𝑛 “ 2, the cost function is not non-decreasing anymore, even if it presents
the same asymptotic behavior. Similar perturbations can be added to make the cost function non-
monotonic even asymptotically, without changing its asymptotic behavior.

As a consequence, we need to modify the interpretation of “p is 𝑂p𝑔q”, into “there exists a non-
decreasing function 𝑓 such that 𝑓 P 𝑂p𝜆𝑛.𝑛2q and the execution of p(n) takes no more than 𝑓p𝑛q
steps”.

To conclude, it appears that we do not want to existentially quantify on the concrete cost function,
but instead on a upper-bound of this cost function, that presents the same asymptotic behavior, and
is non-decreasing. This way, we can assume in the interpretation of big-Os that all the cost functions
are non-decreasing, which simplifies the reasoning and matches the paper proofs.

1.4 Challenge 4: additive constants

In paper proofs, the following lemma is often implicitly used: if 𝑓 is 𝑂p𝑔q, then 𝑓 ` 𝑐, where 𝑐 is a
constant, is also 𝑂p𝑔q. For example, since 3𝑛2 ` 2𝑛` 5 is a 𝑂p𝑛2q then 3𝑛2 ` 2𝑛` 5 plus some 𝑂p1q
is also a 𝑂p𝑛2q.

Yet, such a lemma is false, in the general case. More precisely, it does not hold for 𝑔 “ 0. This
seems like a fake problem: in practice, we do not use 𝑂p0q bounds. Therefore, we somehow need to
formalize the fact that when we write 𝑓 P 𝑂p𝑔q in the context of program verification, we wish to
capture the assumption that g is nonnegative (i.e. @𝑛, 𝑔p𝑛q ą 0).

1.5 Challenge 5: “going to infinity” with multiple parameters

A final subtlety of big-Os is that they implicitely requires some notion of “going towards infinity”.
This is straightforward for cost functions with one parameter (with domain N or Z), and often inlined
in the textbook definition (e.g. from Cormen et al. [6]):

𝑂p𝑔p𝑛qq “ t𝑓p𝑛q | D𝑐 ě 0, D𝑛0,@𝑛 ě 𝑛0, 0 ď 𝑓p𝑛q ď 𝑐𝑔p𝑛qu

However, we may want to generalize a bit, and handle cost functions with multiple parameters
(e.g., “𝑓p𝑚,𝑛q is a 𝑂p𝑔p𝑚,𝑛qq”), seen as functions with domain N2 or Z2. A typical example is the
complexity of graph algorithms, that often depends on both the number of vertex and edges. In this
case, which notion of “going to infinity” should be used is not obvious. Actually, there is no definitive
answer: all are not equivalent, and choosing one will depend, between other things, of later use of the
specification. To illustrate this claim, consider the following program, which fills a rectangle of height
𝑛 and width 𝑚.

let fill_rect n m =
for j = 1 to m do
for i = 1 to n do draw_pixel i j done

done

5

The exact cost function for fill_rect is 𝑓p𝑛,𝑚q “ 𝑚ˆ p1` 𝑛q ` 1 “ 𝑚ˆ 𝑛`𝑚` 1. In practice,
we quickly deduce that fill_rect runs in 𝑂p𝑚ˆ 𝑛q. Taking 𝑔p𝑛,𝑚q “ 𝑚ˆ 𝑛, it is indeed true that
𝑓 “ 𝑂p𝑔q if we require both 𝑛 and 𝑚 to go to infinity.

Sometimes though, because e.g. the bound we establish is for a sublemma, we will want to fix 𝑛
afterwards, and still have 𝑓p𝑛,𝑚q be a 𝑂p𝑔p𝑛,𝑚qq. This is false in our example! For 𝑛 “ 0, in one
hand, we have an exact cost equal to 0 ˆ 𝑚 ´ 𝑚 ` 1 “ 𝑚 ` 1, i.e. 𝑂p𝑚q; in the other hand, the
asymptotic cost given by 𝑔, 𝑂p𝑔p0,𝑚qq is equal to 𝑂p0ˆ𝑚q “ 𝑂p0q, i.e. 0. This is clearly wrong, as
a 𝑂p𝑚q cost is not zero or even a constant. To be able to fix one parameter, we need another notion
of “going to infinity”, that is not equivalent to the previous one. In this setting, a valid bound for 𝑓
is e.g. 𝑔1p𝑚,𝑛q “ 𝑚ˆ 𝑛`𝑚.

This motivates the need for a formalized notion of “going to infinity”. Such a notion exists: mathe-
matical filters—but we still need to understand how to adapt it to formalize the big-Os with multiple
variables we encounter. The challenge here is to allow for the user to specify which filter is associated
with each use of the big-O notation, yet keeping a lightweight notation for the typical case where a
canonical filter is used.

2 Background: the CFML tool

Our Coq formalization is based on the work of Charguéraud and Pottier [5]: it extends the CFML tool
they used for their proof. As a consequence, in the following sections, I present (1) the base CFML
tool [4,3], useful to prove functional correctness of programs; (2) “CFML+credits”, the extension of
CFML used for the proof of Union-Find [5] which allows to prove specifications about algorithmic
complexity, using a mechanism of “time credits”.

2.1 CFML: proving functional correctness of OCaml programs

Charguéraud and Pottier’s machine-checked proof of Union-Find relies on the tool CFML [4,3], which
is based on higher-order Separation Logic [13] and characteristic formulae [2]. The characteristic
formula of an OCaml term 𝑡 is a logic formula J𝑡K, which describes the semantics of 𝑡. For any
precondition 𝐻 and postcondition 𝑄, if the logical proposition J𝑡K𝐻 𝑄 can be proved, then the
Separation Logic triple t𝐻u 𝑡 t𝑄u holds. The characteristic formula J𝑡K can be generated by CFML
given the term 𝑡. It can then be used, in Coq, to prove formally a specification for 𝑡.

Heap predicates Separation Logic heap predicates have type Heap Ñ Prop, and describe a part of
the heap. We define the fundamental heap predicates as in Charguéraud’s paper [2], where ℎ denotes
a heap, 𝐻 a heap predicate, and 𝑃 a Coq logical proposition. A heap is a finite map from memory
locations to values, ℎ1 K ℎ2 asserting that ℎ1 and ℎ2 have disjoint domains, and ℎ1 Z ℎ2 denoting
their disjoint union.

r s ” 𝜆ℎ. ℎ “ H

r𝑃 s ” 𝜆ℎ. ℎ “ H ^ 𝑃

𝐻1 ‹𝐻2 ” 𝜆ℎ. Dℎ1ℎ2. ℎ1 K ℎ2 ^ ℎ “ ℎ1 Z ℎ2 ^ 𝐻1 ℎ1 ^ 𝐻2 ℎ2

DD𝑥.𝐻 ” 𝜆ℎ. D𝑥. 𝐻 ℎ

In standard Separation Logic, another heap predicate is added, of the form 𝑙 ãÑ 𝑣, which describes
a heap with a single memory cell at location 𝑙 containing the value 𝑣.

𝑙 ãÑ 𝑣 ” 𝜆ℎ. ℎ “ p𝑙 ÞÑ 𝑣q

6

Specifications In CFML, a specification for an OCaml term 𝑡 is of the form J𝑡K𝐻 𝑄. If J𝑡K𝐻 𝑄 can
be proved (in Coq), it implies that starting in a state that satisfies the heap predicate 𝐻, 𝑡 reduces
in a finite time to a value 𝑣, such that the final state satisfies the heap predicate 𝑄𝑣. Which implies
that the Separation Logic triple t𝐻u 𝑡 t𝑄u holds: 𝐻 is the precondition, describing the state of the
memory before running 𝑡, and 𝑄 the postcondition, describing both the value produced by 𝑡 and the
state of the memory afterwards.

More details on the generation of the characteristic formula J𝑡K and the correspondence between
OCaml values and OCaml terms can be found in the paper describing CFML [3]. One thing that
can be noted is that the J𝑡K characteristic formula, generated by the CFML tool, has the same shape
and structure as the OCaml program. This will be useful to read the goals produced by the CFML
tactics.

CFML tactics CFML’s Coq library provides a number of tactics that allow the user to walk through
the program, by progressively refining the “characteristic formula” part of the goal, in order to prove
a specification. This is essentially what an automated Verification-Condition generator does, but in
our case we are able to use arbitrary complex lemmas between each step, or e.g. reason by induction.

As a consequence, during a proof of a J𝑡K𝐻 𝑄 specification, our main goal (excluding auxiliary
side subgoals) will be of the form 𝑓 𝐻 1𝑄1, with 𝑓 being a subterm of the J𝑡K characteristic formula,
smaller as the proof progresses.

CFML tactics match the standard reasoning rules used to derive Separation Logic Hoare triples.
Therefore, making the proof progress is often only a matter of applying the tactic corresponding to
the head constructor of the current formula 𝑓 , then proving the side subgoals that ensue.

To sum up, CFML provides a characteristic formula generator, and a Coq library that allows to
write Separation Logic specification, and prove them using standard reasoning rules on programs
thanks to Coq tactics. Let us illustrate this by proving functional correctness for a simple program:
the incr function, that increments a reference.

let incr r =
r := !r + 1

Parameter incr_cf :
tag tag_top_fun Label_default
Body incr r ñ
(LetApp _x4 := ml_get r in

App ml_set r (_x4 + 1);)

We show the OCaml code for incr, alongside the characteristic formula that CFML produces from
it. In practice, the formula is generated in a file that the user doesn’t need to read, but only import
at the beginning of his proof.

A specification for incr is written as follows, meaning that as a precondition, r must be point to
some integer i; after running incr, r must point to i+1:

Lemma incr_spec :
Spec incr r |R>> @(i: int),
R (r i) (# r (i+1)).

“#H” is syntactic sugar for “fun (_:unit)ñ H”: incr returns (). The Spec notation allows to abstract
from the exact characteristic formula provided for incr. The |R>> piece of syntax is actually a binder,
R being the bound variable, that will be instantiated with the characteristic formula. Once we feed
it with the one we obtained, the goal becomes of the form JincrK (r i) (#r (i+1)). Spec also
acts as a binder for the arguments of the specified function: “Spec f x |R>> R H Q” is equivalent to
“@x, App f x H Q”, which corresponds to “@𝑥, t𝐻u App f x t𝑄u” in term of a Hoare triple.

The xcf tactic automatically introduces the characteristic formula.

Proof.
xcf. intros.

The resulting goal is as follows:

7

r : loc
i : int
============================
(LetApp _x4 := ml_get r in
App ml_set r (_x4 + 1);) (r i ‹ []) (# r (i + 1))

We make the proof progress by applying tactics that match the head constructor of the character-
istic formula part: here, it’s a LetApp; we use the xapps tactic. If the goal started with a If, we would
have used xif, etc. We need another xapp after that, for the App constructor. Finally, what remains
to be proven is a “heap implication”, stating that the final state matches the post-condition.

============================
#r (i + 1) ‹ [] § #r (i + 1) ‹ DDH’, H’

The hsimpl tactic is able to prove it automatically, by instantiating an existantial variable. Figure 1
holds the complete proof of incr’s specification.

2.2 CFML with credits: establishing concrete cost bounds

In order to assess the asymptotic time complexity of OCaml programs, Charguéraud and Pottier
extend CFML, introducing time credits. A time credit is a resource that represent the right to perform
one step of computation. Time credits are heap resources: they can be required as a part of the pre or
postcondition, and interestingly, they can be stored for later consumption, thus allowing amortized
complexity analyses.

Characteristic formulae are now instrumented to consume one time credit at each function call.
We rely on (and admit) the following property of the OCaml compiler: if one ignores the cost of
garbage collection, counting the number of function calls and for/while loop iterations performed
by the source program is an accurate measure, up to a constant factor, of the number of machine
instructions executed by the compiled program.

Therefore, the (amortized) time complexity for a function consists, up to a constant factor, in the
number of credits required in its precondition.

Heap predicates Definitions of heap predicates need to be adapted a bit: a “heap” is now a couple
of a map (from locations to values) and a integer: the number of available credits. We also add a new
fundamental heap predicate $𝑛, describing a heap with exactly 𝑛 credits.

$𝑛 ” 𝜆p𝑚, 𝑐q. 𝑚 “ H ^ 𝑐 “ 𝑛

𝑙 ãÑ 𝑣 ” 𝜆p𝑚, 𝑐q. 𝑚 “ p𝑙 ÞÑ 𝑣q ^ 𝑐 “ 0

p𝑚1, 𝑐1q K p𝑚2, 𝑐2q ” 𝑚1 K 𝑚2

p𝑚1, 𝑐1q Z p𝑚2, 𝑐2q ” p𝑚1 Z𝑚2, 𝑐1 ` 𝑐2q

H:Heap ” pH:Store, 0q

The definitions for r𝑃 s, 𝐻1 ‹𝐻2 and DD𝑥.𝐻, are unchanged.

Tactics A new xpay tactic is added, which “pays” for a time credit when required by a function call:
more precisely, it consumes and removes from the current precondition a time credits, in order to
justify a function call, or entering a loop.

With this extension, the specification and proof for incr becomes:

Lemma incr_spec :
Spec incr r |R>> @(i: int),
R ($ 1 ‹ r i) (# r (i+1)).

Proof.
xcf. intros.
xpay.
xapps. xapp. hsimpl.

Qed.

8

We now have to give one credit ($ 1) in the precondition of incr, as it performs one step of
computation. The credit does not appear in the postcondition: it is consumed by the function. In the
proof, we use the xpay tactic to justify that we are indeed able to pay for the computation step.

3 CFML with credits and big-Os: asymptotic complexty bounds

Our development extends “CFML + time credits”, adding asymptotic reasoning and big-Os: it could
be summarized as “CFML + time credits + big-Os”. In this section I present the new definitions and
notions introduced in our extension, providing the following features:

– Given an explicit cost function (a “number of credits”), allow to prove an asymptotic big-O bound
for it. The cost function may be defined after other functions asymptotically bounded by big-Os;

– Allow various manipulations on big-O bounds: composition, parameter transformation, etc.

3.1 Filters and textbook big-O definition

As motivated earlier, a formal notion generalizing “going to infinity” in a set that can be Z, Z2, . . . is
needed. We reuse the notion of filter from the literature. A similar notion is used in the real analysis
Coq library Coquelicot [1], as a generic tool to unify the various notions of convergence in R̄. In our
case, we are only interested in convergence to infinity, in sets of the form Z𝑘.

Informally, a filter for a given set describes a way to tend to infinity in this set. On Z, the one
obvious filter that corresponds to the textbook definition of “𝑂” will work in any situation. However,
as illustrated above, on Z2 (i.e. for functions with two parameters), we will be able to define various
(not equivalent) filters, and clearly state which one should be used when writing a 𝑂pq.

On a set A, a filter has type (A Ñ Prop)Ñ Prop, which can be interpreted either as a set of subsets
of A (the sets of neighborhoods of infinity), or as a set of predicates on A (the set of properties that
hold when going to infinity). The Filter class bundles additional properties that must be satisfied,
like e.g. stability by intersection. This definition allows us to write ultimately P, when ultimately is
of type filter A, meaning that P is true at some point “when going towards infinity”.

Definition filter A := (A Ñ Prop) Ñ Prop.
Class Filter {A : Type} (ultimately : filter A) := {
(* A filter must be nonempty. *)
filter_nonempty: DP, ultimately P;

(* A filter does not have the empty set as a member. *)
filter_member_nonempty: @P, ultimately P ÑDa, P a;

(* A filter is closed by inclusion and by intersection. *)
filter_closed_under_intersection:
@P1 P2 P : set A,
ultimately P1 Ñ ultimately P2 Ñ (@ a, P1 a Ñ P2 a Ñ P a) Ñ
ultimately P

}.

The textbook definition of big-O can now be generalized for any functions f, g of type A Ñ Z, given
a filter ultimately of type filter A. We impose Z as the codomain of 𝑓 and 𝑔 for practical reasons,
even if we could be a bit more generic. Also for practical reasons, norm is not actually a norm, but
equals to zero on negative values (it is defined as the Coq function Z.to_nat).

Definition dominated {A} ultimately {@Filter A ultimately} (f g : A Ñ Z) :=
Dc, ultimately (fun x ñ norm (f x) ď c * norm (g x)).

9

Intuitively, “dominated ultimately f g” means “𝑓 is a 𝑂p𝑔q, for the filter 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝑙𝑦”. Surprisingly
enough, this single notion is not sufficient to have convenient and composable proofs, as soon as the
exact cost functions are abstracted away (we want to have explicit bounds, but abstract cost function,
for modularity reasons). As pointed by challenges 3 and 4 (sections 1.3, 1.4), additional aspects must
be taken in account in our 𝑂pq definition: monotonicity of the cost function, and special handling of
𝑂p0q bounds.

3.2 Compatibility between filter and preorder, monotonicity

To address challenge 3 (section 1.3, we require our cost functions to be monotonic, with respect to
some preorder (we do not need an order). For things to work well, some compatibility property is
needed, between the preorder le (of type A Ñ A Ñ Prop) and the filter F (of type filter A).

The FilterOrder Coq class describes the compatibility property:

Class FilterOrder {A: Type}
(F: filter A) (le: binary A)
{Filter: Filter F} {O: Preorder le} :=

{
filter_order_compatibility : @x: A, F (fun y ñ le x y)

}.

Intuitively, le is compatible with F if increasing respectively to le goes towards infinity. Addition-
ally, we can now define in a generic way a filter from a given preorder, such that they are compatible.
This is not possible in the general case, however a sufficient condition is that le admits an upper
bound for each pair of elements. Given a preorder le that satisfies this property, its “canonical filter”
is defined as:

Definition canonical_filter : filter A :=
fun (P : A Ñ Prop) ñDx0, @x: A, le x0 x Ñ P x.

We are able to define an instance of the FilterOrder class for canonical_filter.

Definition fo_canonical_of_order : FilterOrder canonical_filter le.

The standard filter for N and Z is actually defined thanks to canonical_filter, and corresponds
to the textbook notion of divergence to infinity.

Monotonicity predicates are defined in a standard way: monotonic leA leB f assess that f (of
type A Ñ B) is monotonic regarding to relations leA and leB (respectively of type A Ñ A Ñ Prop and
B Ñ B Ñ Prop). monotonic_after leA leB f a0 asses that f is monotonic for values greater than a0.
Combined with a filter predicate, monotonic_after provides a notion of asymptotic monotonicity.

Definition monotonic A B (leA : A Ñ A Ñ Prop) (leB : B Ñ B Ñ Prop) (f : A Ñ B) :=
@a1 a2,
leA a1 a2 Ñ leB (f a1) (f a2).

Definition monotonic_after A B (leA: A Ñ A Ñ Prop) (leB: B Ñ B Ñ Prop)
(f: A Ñ B) (a0: A) :=

@a1 a2,
leA a0 a1 Ñ leA a1 a2 Ñ leB (f a1) (f a2).

3.3 Custom big-O definition

To address the second issue, detailed in challenge 4 (section 1.4), we define an variant of dominated,
dubbed idominated, which allows more convenience lemmas that are used in practice. idominated _ _ f g
unifies the cases where g is equal to 0 where the ones where it is a 𝑂p1q: in these cases, we are only
interested in knowing that both f and g are 𝑂p1q. In the other cases—in which we are most interested
in practice—idominated corresponds to dominated. We also require g to be asymptotically monotonic.

10

Definition idominated
{A} ultimately leA {Filter: Filter ultimately} {O: Preorder leA}
{FO: FilterOrder ultimately leA}
(f g : A Ñ Z) :=

ultimately (monotonic_after leA le g) ^
((bounded _ f ^ bounded _ g) _dominated _ f g).

The bounded predicate is equivalent as “being a 𝑂p1q”. Basically, idominated handles more “patho-
logic cases” while implying dominated on the interesting ones. As a consequence, the following lemma
is now true for any constant c: idominated _ _ f g ñ idominated _ _ (𝜆n ñ c + f n)g. Lemmas about
idominated are more simple to use and get rid of multiple side conditions; as a drawback proving them
is more technical (e.g. we proved for internal use the lemma stating that a monotonic unbounded
function tends to infinity, in our setting of filters compatible with preorders).

Remark Another definition of idominated that comes in mind is to require g to be ultimately greater
than zero. This seems a reasonable request, however it doesn’t compose very well: idominated _ _ f g
does not imply
idominated _ _ (𝜆n ñ Z.log2 (f n))(𝜆n ñ Z.log2 (g n)), because Z.log2 (g n) can be equal to zero for all
n if g n is always equal to 1.

3.4 Custom specification predicate

A new “specification with big-Os” predicates wraps it all, quantifying existentially on the exact cost
function to abstract it.

Definition SpecO (ultimately: filter A) leA (g: A Ñ Z)
(spec: (A Ñ Z) Ñ Prop) :=

D(f: A Ñ Z),
(@ x, 0 ď f x) ^
monotonic _ _ f ^
idominated _ _ f g ^
spec f.

SpecO is a convenient wrapper to state a specification using a big-O: given an asymptotic bound
g, it quantifies existentially on a explicit cost function f, and bundle the necessary facts about f:

– f needs to be positive, as it represent a number of time credits;
– As justified in section 3.1, we require f to be monotonic;
– f should be a big-O of g, using our custom idominated definition;
– Finally, the spec f specification must hold. Usually, spec f is of the form Spec .. |R>> .., i.e. a

standard CFML specification, that can use f in its precondition to require time credits in a
modular way.

SpecO beginning by Df, ... means that, to prove a SpecO goal, the user must more or less give a
precise cost function right away. As it is now, in order to “guess” the exact expression of the cost
function, the usual method is to look at the OCaml program, introduce the abstract cost functions
for auxiliary functions, and remember that each function call consumes a credit.

An additional lemma, SpecO_of_SpecO_after, allows to prove a SpecO specification and side sub-
goals only for values greater that a given bound. The lemma constructs a new cost function, equal to
the user-provided one on this subdomain, and equal to zero elsewhere.

3.5 Additional lemmas, instances and tactics

These definitions come with various lemmas, instances and automated tactics to assist the user in
her proofs. Some of them will be mentioned and described in the case studies, section 4.

11

4 Case studies

We illustrate the usage of our extension of CFML through various examples, presenting different
challenges, of increasing complexity. Basic examples give a first grasp of the most useful new tactics,
the proof of dynamic arrays involves amortization analysis over a mutable structure, and the proof
of binary random access list will demonstrate composition of big-Os, product filters, and parameter
transformations.

4.1 A first simple example: incr

We start by proving a very simple specification: asymptotic complexity for the incr function.

Lemma incr_spec :
SpecO1 (fun F ñ
Spec incr r |R>> @(i: int),
R ($ F tt ‹ r i) (# r (i+1))).

SpecO1 is SpecO, specialized with a filter on domain unit, useful for 𝑂p1q cost functions that do
not depend on any parameter. Recall that the F bound in the specification is a name for the abstract
cost function of incr (which is here a 𝑂p1q), abstracting from the precise cost.

Just like we used the xcf tactic for goals starting with Spec, we use here the xcfO tactic. It takes
an argument: the expression of the cost function. Note that the domain of the cost function is indeed
unit, and that we provide a concrete expression for the cost function, before beginning the proof:
credit count is explicit in the proof, and only abstracted afterwards.

Proof.
xcfO (fun (_:unit) ñ 1).

xcfO, applied on a SpecO goal, instantiates the existential quantification, and tries to prove the side
subgoals (positivity, monotonicity, domination) using automated tactics. In this very simple example,
all automated tactics succeed and the goal becomes the same as before:

============================
Spec incr r |R>> @(i: int),
R ($ 1 ‹ r i) (# r (i+1)).

From this point, the proof is the same as before.

Lemma incr_spec :
SpecO1 (fun F ñ
Spec incr r |R>> @(i: int),
R ($ F tt ‹ r i) (# r (i+1))).

Proof.
xcfO (fun (_:unit) ñ 1).
xcf. intros. xpay.
xapps. xapp. hsimpl.

Qed.

4.2 A basic example: mktree

A slightly more interesting example is the proof of the mktree recursive function, which builds a
complete tree of depth 𝑛 in 𝑂p2𝑛q time.

type ’a tree =
| Node of ’a tree * ’a tree
| Leaf of ’a

let rec mktree (depth: int) (x: ’a): ’a tree =
if depth <= 0 then Leaf x
else Node (mktree (depth - 1) x,

mktree (depth - 1) x)

A specification for proving mktree complexity uses SpecO, unsurprisingly, requiring credits from a
cost function dominated by (𝜆n ñ 2 ^ n).

12

Lemma mktree_spec :
SpecO (fun n ñ 2 ^ n) (fun F ñ
Spec mktree (depth: int) (x: a) |R>>
0 ď depth Ñ
R ($ F depth) (fun (t: tree a) ñ [])).

Note that this specification is not as expressive as it could be: it does not require the returned
tree to be complete, as we are only interested in the complexity analysis.

The domain of our cost function F is Z. However, we are only interested in non negative values, as
is depth. We apply SpecO_of_SpecO_after to allow us to prove our specification only for these values.

Proof.
applys @SpecO_of_SpecO_after 0.
xcfO (fun n ñ 2 ^ (n + 1) ´ 1).

The cost function is then introduced using xcfO: building a tree of depth 2𝑛 takes exactly 2𝑛`1´1
steps. Aside from the specification, xcfO produces two side subgoals that have not been proved
automatically:

– The cost function is non-negative.

============================
@x : int, 0 ď x Ñ 0 ď 2 ^ (x + 1)%I ´ 1

Easily proved thanks to the pow2_pos auxiliary lemma.

´ intros. forwards̃ : pow2_pos (x+1).

– The cost function is a 𝑂p2𝑛q.

============================
idominated towards_infinity_Z le (fun n : int ñ 2 ^ (n + 1)%I ´ 1)

(fun n : int ñ 2 ^ n)

We can use a bit of automation here: the idominated_Z_auto tactic is able to solve automatically
simple goals of the form idominated _ _ f g, when f and g are composed of +, *, Z.log and Z.pow.
Even if it does not succeed at solving the goal, it is often able to make some progress, for example
by removing unnecessary constants.
In our case, applying idominated_Z_autõ leads to two subgoals:
‚ towards_infinity_Z (fun x : int ñ 0 ď x): towards_infinity_Z is the standard filter on Z. This

subgoal asks for a rank from which values are greater than zero: as one can check by unfolding
towards_infinity_Z, a simple exists~ 0. proves the goal.

‚ towards_infinity_Z (monotonic_after le le (fun n : int ñ 2 ^ n)): just as idominated_Z_auto
is an automated tactic to solve or simplify idominated goals, the monotonic_Z_auto tactic tries
to solve or simplify monotonicity goals.
In this case, calling the tactic proves the subgoal automatically.

- idominated_Z_auto~. exists~ 0. monotonic_Z_auto.

The last quirk is due to SpecO_of_SpecO_after. The goal uses an abstract cost function F’ instead
of F, and we are given a proof that @x, 0 ď x Ñ F’ x = F x. In practice, we just add this proof to our
context and rewrite it when needed.

intros F’ eqF’.

The rest of the proof uses standard CFML tactics, plus:

– xpay when presented to a Pay; ... goal;
– csimpl when presented to a heap implication involving credits: turns the goal into an (in)equality

between the quantities of credits.

The complete proof can be seen in Figure 2.

13

4.3 Dynamic arrays

We formalized an OCaml implementation of dynamic arrays (that grow and shrink according to
number of items it stores, as in Cormen et al. [6]) using CFML with time credits. The proof illustrates
how an amortized complexity analysis can be performed in this setting.

Definition A dynamic array is an array-like data structure that supports constant time random
access (get and set), plus amortized constant time push and pop operations, which respectively add
and remove an element at the end of the array. The memory shape of the structure is a standard
array, of size equal or greater than the number of elements stored in it: there may be pre-allocated
but unused memory cells at the end of the array. We name capacity the current size of the whole
in-memory array: it represents the maximum number of elements that can be stored before having
to allocate a new, bigger array.

push and pop do not always perform in constant time: from time to time, a new array (bigger or
smaller) needs to be allocated, and the structure contents copied from the old array into the new one.
However, it is possible to amortize the cost of these reallocations, by carefully choosing the size of
the allocated arrays, and deciding when to reallocate. This is a standard analysis, detailed on paper
in Cormen et al. [6], which we formalize in Coq.

The key technique is to store time credits in the heap, for later consumption. The heap predicate
hinv characterizing a dynamic array is defined as describing a standard array, for some capacity, plus
some logical invariants, plus a certain amount of time credits.

Definition hinv A {IA:Inhab A} (L:list A) size data (default:A) D n b_min t :=
t RecDynArray default size data

‹ data Array D
‹ [inv L size D n b_min]
‹ $(potential size n).

Definition DynArray (A:Type) {IA:Inhab A} (L:list A) (t:dyn_array A) :=
DDsize data default D n, t hinv L size data default D n true.

The exact amount of credits is defined by a potential function, which depends on the capacity of
the array and the number of elements stored in it.

Definition potential size n := Z.abs (size ´ 2^(n + 1)) * op_cst.

A specification for push is then:

Lemma push_spec : @A,
SpecO1 (fun F ñ
Spec push (t:dyn_array A) (x:A) |R>>
@{IA:Inhab A} (L:list A),
R (t DynArray L ‹ $F tt) (# t DynArray (L&x))).

Apart from the credits stored in the structure, push only requires a constant number of credits to
run: if more time credits are needed to resize the array, they will be provided by the t DynArray L
part of the heap.

Specifications using big-Os are not particularly challenging in this example, though. As all functions
of the API run in constant time or amortized constant time, only 𝑂p1q cost functions are involved.

4.4 Binary Random Access Lists

Our most interesting and challenging case study is the formalization of binary random access lists, a
purely functional data structure, well described by Okasaki [12]. Its proof is particularly interesting

14

as it involves some subtle reasoning with big-Os, that proved to be a challenge when designing the
library.

In a first part we present in more details the “binary random access list” data structure, recalling
the invariants involved and justifying informally the correctness of the implementation. In a second
part, we describe key difficulties of the proof, and how they are handled using our CFML library
extension.

Binary Random Access Lists: the OCaml implementation A “binary random access list” is
a functional data structure, which features usual list operations (cons and uncons for adding and
removing an element at the head of the list), but also random access lookup and update. That is, one
can add or remove an element at the head of the list, but also modify or query the 𝑖𝑡ℎ element of the
structure.

These four operations perform in worst-case 𝑂plogp𝑛qq steps, where 𝑛 is the number of elements
stored in the structure. Let us see step by step how it is implemented in OCaml. Figure ?? contains
the source code for the complete implementation.

Type definitions, implicit invariants A binary random access list is a list of binary trees: we first
define a tree OCaml type.

type ’a tree = Leaf of ’a | Node of int * ’a tree * ’a tree

Notice that only the leaves store elements. Nodes contain an integer corresponding to the number
of elements stored (in the leaves) in the tree, which makes a size function trivial to implement:

let size = function
| Leaf x -> 1
| Node (w, _, _) -> w

Now, a binary random access list is a list of either a tree, either nothing. We consequently define
an tree option type, here dubbed digit.

type ’a digit = Zero | One of ’a tree

The name digit comes of the similarity between a binary random access list and a list of bits,
representing an integer—adding an element at the head being similar to incrementing the integer,
etc. We’ll see more of that later.

Finally, we define the type for the whole structure: the binary random access list.

type ’a rlist = ’a digit list

A valid binary random access list should satisfy some additional invariants:

– Trees are complete trees – a tree of depth 𝑑 always has 2𝑑 leaves;
– Any rlist contains trees of increasing depth starting at some depth 𝑝: if the 𝑖𝑡ℎ cell (indexing

from 0) contains a tree (is of the form One t), then this tree has depth 𝑝` 𝑖;
– A complete binary random access list is a rlist with starting depth 𝑝 equal to 0: its first tree, if

present, is only a leaf.

To sum up, a binary random access list is a list, which stores in its 𝑖𝑡ℎ cell either nothing, or a
complete binary tree of depth 𝑖.

As an example, a binary random access list storing the sequence 1, 2, 3, 4, 5 can be represented as:

15

Binary random access lists look like integers in binary As mentioned before, a binary random
access list is in fact quite similar to an integer represented in binary, i.e. as a list of bits.

Actually, if one erases the trees from the implementation
(type ’a digit = Zero | One of ’a tree becomes type digit = Zero | One), one obtains an imple-
mentation of integers, represented as a list of bits (least significant bit at the head of the list); the
cons operation being incrementing, uncons decrementing.

Incrementing an integer consists in looking at the least significant bit; if it’s a zero, turning it into
a one; if it’s a one, turning it into zero, and recursively continuing to increment, starting with the
next bit.

“Consing” to a binary random access list is similar, except that we have to handle a bit more
information: the elements of the structure, stored in the trees.

Instead of adding 1, we add a tree t (more precisely, a digit One t): if the first element of the list is
Zero, we turn it into One t. If it’s a One t’, we turn it into Zero, and recursively continue, but with a
new tree: Node (size t + size t’, t, t’). This corresponds to the link operation, which combines
two trees of depth 𝑑 into one of depth 𝑑` 1.

let link t1 t2 = Node (size t1 + size t2, t1, t2)

The OCaml implementation follows:

let rec cons_tree t = function
| [] -> [One t]
| Zero :: ts -> One t :: ts
| One t’ :: ts -> Zero :: cons_tree (link t t’) ts

let cons x ts =
cons_tree (Leaf x) ts

The uncons operations follows the same idea: it is similar to decrementing, except that we also
have to invert the link operation to obtain trees of smaller depth.

let rec uncons_tree = function
| [] -> raise Empty
| [One t] -> (t, [])
| One t :: ts -> (t, Zero :: ts)
| Zero :: ts ->
match uncons_tree ts with
| Node (_, t1, t2), ts’ -> (t1, One t2 :: ts’)
| _ -> assert false

let head ts =
match uncons_tree ts with
| (Leaf x, _) -> x
| _ -> assert false

let tail ts =
let (_,ts’) = uncons_tree ts in

ts’

Unconsing a rlist of starting depth 𝑝 always returns a tree of depth 𝑝 (or fails if the list is empty).
In particular, as the binary access list manipulated by the user always starts with depth 0, we can
assume in the implementation of ‘head‘ that the unconsed tree is a leaf.

Random access Once we know how to build a structure following the invariants we stated, thanks
to cons and uncons, it is quite easy to implement random access lookup and update.

The idea is to walk through the list; faced to a Node (w, l, r) tree, we know how much elements
it contains: it is exactly w. Knowing the index 𝑖 of the element we want to visit, we can compare it
to w to know whether we should explore this tree (if 𝑖 ă 𝑤), or continue walking the list.

let rec lookup i = function
| [] -> raise (Invalid_argument "lookup")
| Zero :: ts -> lookup i ts

16

| One t :: ts ->
if i < size t
then lookup_tree i t
else lookup (i - size t) ts

If we have to walk through the tree, we can also do this without performing an exhaustive explo-
ration: by comparing the index to half the size of the tree, we can decide whether we should explore
the left or right subtree.

let rec lookup_tree i = function
| Leaf x -> if i = 0 then x else raise (Invalid_argument "lookup")
| Node (w, t1, t2) ->
if i < w/2
then lookup_tree i t1
else lookup_tree (i - w/2) t2

The update function works in a similar fashion.

Specification and complexity analysis of Binary Random Access Lists The complete Coq
script for the proof can be observed online.

Invariants of the structure We begin the Coq formalization by expressing explicitly the implicit
invariants of the algorithm, mentioned in the previous section.

Knowing that a random access list structure satisfies these invariants is key for the complexity
proof: it gives us information about its size, and the size of its subtrees. Then, to know that our
structures actually satisfy these invariants, we need to prove functional correctness of the OCaml
code, i.e. prove that the functions do not break the invariants of the structure.

Consequently, our Coq proof is twofold: it proves both functional correctness, and algorithmic
complexity.

Predicates CFML automatically generates the Coq counterpart of the OCaml datatypes, tree a
and rlist a. We start the proof by defining three predicates btree, inv and Rlist, that make explicit
the invariants of the structure.

First, a btree predicate. btree n t L means that the t is a complete (binary) tree of depth n which
contains the sequence of elements in L.

Inductive btree : int Ñ tree a Ñ list a Ñ Prop :=
| btree_nil : @x,

btree 0 (Leaf x) (x::nil)
| btree_cons : @p p’ n t1 t2 L1 L2 L’,

btree p t1 L1 Ñ
btree p t2 L2 Ñ
p’ =’ p+1 Ñ
n =’ 2^p’ Ñ
L’ =’ L1 ++ L2 Ñ
btree p’ (Node n t1 t2) L’.

Then, an inv predicate: the invariant for the whole structure. inv p ts L means that ts is a rlist
of complete trees of increasing depth, starting with depth p. L is the sequence of elements represented
by ts. ts being a well-formed binary random access list corresponds to the case where p is equal to 0.
It is useful to consider the cases where p is non-zero, though: reasoning by induction on ts will lead
to such cases.

Inductive inv : int Ñ rlist a Ñ list a Ñ Prop :=
| inv_nil : @p,

p ě 0 Ñ

http://gallium.inria.fr/blog/formally-verified-complexity-with-cfml-part-3/BinaryRandomAccessList_proof.v

17

inv p nil nil
| inv_cons : @p (t: tree a) ts d L L’ T,

inv (p+1) ts L Ñ
L’ ‰nil Ñ
p ě 0 Ñ
(match d with
| Zero ñ L = L’
| One t ñ btree p t T ^ L’ = T ++ L
end) Ñ
inv p (d :: ts) L’.

Finally, the Rlist predicate corresponds to the p = 0 case: it describes a complete well-formed
binary random access list.

Definition Rlist (s: rlist a) (L: list a) := inv 0 s L.

Bounds Given structures verifying these invariants, we can deduce additional properties, in partic-
ular:

Lemma length_correct : @t p L,
btree p t L Ñ length L = 2^p.

Lemma ts_bound_log : @ts p L,
inv p ts L Ñ length ts ď Z.log2 (2 * (length L) + 1).

These lemmas will be key for proving our log complexity bounds, and constitute in fact our only
mathematical analysis for this library.

cons_tree: a first proof Let us jump directly to the proof of the (internal) cons_tree function.

let rec cons_tree (t: ’a tree) = function
| [] -> [One t]
| Zero :: ts -> One t :: ts
| One t’ :: ts -> Zero :: cons_tree (link t t’) ts

and link t1 t2 = Node (size t1 + size t2, t1, t2)

cons_tree t ts adds a new tree t to the rlist ts. It may recursively walk through the list, calling
link (the process is very similar to incrementing an integer represented as a list of bits).

As link runs in constant time, cons_tree performs 𝑂p|𝑡𝑠|q operations. Moreover, we showed earlier
that |𝑡𝑠| “ 𝑂plogp|𝐿|qq where 𝐿 is the list of elements contained in ts. Therefore, cons_tree performs
“in 𝑂plogp𝑛qq” (we want to eventually express the complexities depending on the number of elements
in the structure; here “𝑛”).

Our formal proof follows this two-step informal reasoning: first we prove a 𝑂p|𝑡𝑠|q complexity,
reasoning by induction on ts to follow the flow of the OCaml program; then we use our ts_bound_log
lemma to deduce a logarithmic bound depending on the number of elements stored in ts.

cons_tree’s auxiliary specification We therefore prove an auxiliary specification, as our first step.
Let us walk through the proof.

Lemma cons_tree_spec_aux :
SpecO (fun n ñ n) (fun F ñ
Spec cons_tree (t: tree a) (ts: rlist a) |R>>
@p T L, btree p t T Ñ inv p ts L Ñ
R ($ F (length ts)) (fun ts’ ñ [inv p ts’ (T++L)])).

18

To prove a SpecO goal, one must start by providing an explicit cost function. In this case however,
we do not provide one right away: as cons_tree calls the link function, its cost function depends on
link’s one. We need to unpack link’s specification in order to access its (abstract) cost function. We
also use SpecO_of_SpecO_after to restrict the domain to non negative values (as is length ts).

Proof.
destruct link_spec as (link_cost & link_cost_nonneg & ? & ?).
applys @SpecO_of_SpecO_after 0.
specialize (link_cost_nonneg tt). (* Help the automated tactics. *)
xcfO (fun n ñ 1 + (1 + (link_cost tt)) * n).

Our cost function is still relatively simple, so the additional goals (monotonicity, domination, ...)
are automatically proven by xcfO. The rest of the proof (proving the specification by induction) does
not present new difficulties. Figure 3 shows the complete proof.

cons_tree’s main specification The main specification can then use a cost function in 𝑂plogp|𝐿|qq,
𝐿 being the list of elements in the structure.

Lemma cons_tree_spec :
SpecO Z.log2 (fun F ñ
Spec cons_tree (t: tree a) (ts: rlist a) |R>>
@p T L, btree p t T Ñ inv p ts L Ñ
R ($ F (length L)) (fun ts’ ñ [inv p ts’ (T++L)])).

The proof is simple: we first reuse the cost function of the previous lemma cons_tree_spec_aux,
feeding it with a sufficient number of credits, as justified by the ts_bound_log lemma (“|𝑡𝑠| ď logp2ˆ
|𝐿| ` 1q”).

Proof.
destruct cons_tree_spec_aux
as (cons_tree_cost & cost_pos & cost_mon & cost_dom & cons_tree_spec).

xcfO (fun n ñ cons_tree_cost (Z.log2 (2 * n + 1))).

This time, we have to prove some additional goals by hand, produced by xcfO.

– Monotonicity

´ applys̃ @monotonic_comp. monotonic_Z_autõ .

We first apply monotonic_comp: our cost function is monotonic as composition of two monotonic
functions. applys̃ includes a bit of automation, so the fact that cons_tree_cost is monotonic
(present in the context) is automatically used. Remains to prove that fun n ñ Z.log2 (2 * n + 1)
is monotonic: monotonic_Z_autõ solves it automatically.

– Domination

´ applys @idominated_transitive. applys̃ @idominated_comp cost_dom.
monotonic_Z_auto. monotonic_Z_autõ . simpl. idominated_Z_autõ .

Our initial goal is idominated _ _ (fun n ñ cons_tree_cost (Z.log2 (2 * n + 1)))Z.log2. We cannot
directly apply a composition lemma; however we know that cons_tree_cost is 𝑂p𝑛q: we first
invoke transitivity of idominated, then apply a composition lemma.
The remaining goals are proved automatically, either by monotonic_Z_auto or idominated_Z_auto
(here, idominated_Z_autõ proves
idominated _ _ (fun n ñ Z.log2 (2 * n + 1)Z.log2).

We can finally prove the specification itself:

´ xweakeñ . do 4 intro. intro spec. intros. xgc; [xapplỹ spec K; csimpl̃ .
{ applỹ cost_mon. applỹ ts_bound_log. }

19

The proof consists in a weakening of cons_tree_spec_aux, plus the following facts:

– ts_bound_log: |𝑡𝑠| ď logp2ˆ |𝐿| ` 1q
– cons_tree_cost is monotonic: needed to apply ts_bound_log inequality under cons_tree_cost.

lookup: how to deal with multiple parameters As illustrated by challenge 5 (section 1.5), things
get tricky when the cost function depends on multiple parameters. More precisely, the user has to
specify which notion of “going to infinity” she’s intending, by choosing the right filter for the domain
(e.g. Zˆ Z for a cost function with two parameters).

Proving a specification for the lookup function involves precisely this kind of difficulty.

let rec lookup i = function
| [] -> raise (Invalid_argument "lookup")
| Zero :: ts -> lookup i ts
| One t :: ts ->
if i < size t
then lookup_tree i t
else lookup (i - size t) ts

We prove a lookup i ts specification by induction on ts. During the induction we have two pa-
rameters: |ts|, and the depth p of ts’s first tree (matching an inv p ts L invariant).

The respective status of these two parameter differs, though. Once the proof by induction done,
we’ll want, as for cons_tree, express the cost function depending on |L|. |ts| will tend to infinity with
|L|, but p will be fixed to 0, as lookup is only supposed to be called on well-formed random access
lists from the user point of view.

When proving cons_tree, we did not have to provide any filter: the standard filter for Z was
inferred. Here, we proceed as follows:

– We establish on paper a first asymptotic bound of 𝑂p𝑝` |𝑡𝑠|q;
– We provide a filter towards_infinity_xZ p on (a subset type of) Z*Z, which makes its second

component tend to infinity, while the first is fixed to p (p is a parameter of the filter);
– We prove an intermediate specification using this filter, for any fixed p. Note that unfortunately,

we cannot use SpecO to state our specification: to get a provable and useful specification, we need
to quantify over p “in the middle of SpecO”.
The result is a quite ugly intermediate specification, unfortunately; the result of unfolding SpecO
and quantifying over p in the middle.

Lemma lookup_spec_ind :
D(F: Z * Z Ñ Z),
(@ m n, 0 ď m Ñ 0 ď n Ñ 0 ď F (m, n)) ^
(@ (p: Z),

0 ď p Ñ
monotonic (fixed_fst_le le p) le (fun p ñ F (proj1_sig p)) ^
idominated (FO := fo_towards_infinity_xZ p) _ _

(fun p ñ F (proj1_sig p))
(fun p ñ let ’(m, n) := proj1_sig p in m + n)) ^

Spec lookup (i:int) (ts: rlist a) |R>>
@p L, inv p ts L Ñ ZInbound i L Ñ
R ($F (p, length ts)) (fun x ñ [ZNth i L x]).

The proof (by induction) has the same spirit as these shown before—basically applying monotonic_*
and idominated_* lemmas—just more involved.

– Finally, we prove a nicer top-level specification for lookup:

Lemma lookup_spec :
SpecO Z.log2 (fun F ñ

20

Spec lookup (i: int) (ts: rlist a) |R>>
@L, Rlist ts L Ñ ZInbound i L Ñ
R ($F (length L)) (fun x ñ [ZNth i L x])).

After instantiating the cost function of our intermediate spec lookup_spec_ind as lookup_spec_cost,
and projecting the monotonicity and domination properties with 𝑝 “ 0, we provide the following
cost function:

xcfO (fun n ñ lookup_spec_cost (0, Z.log2 (2 * n + 1))).

As fun (m,n)ñ lookup_spec_cost (m, n) is a 𝑂p𝑚` 𝑛q, by composition, our cost function is indeed
a 𝑂plogp𝑛qq. We conclude by weakening.

To sum up, the two key aspects here were: (1) choosing the right filter, adapted for later usage of the
auxiliary specification, (2) managing to write a specification using this filter, which was not obvious.

Our custom filter here was towards_infinity_xZ p (for any p), a filter on the set FixedFst p =
{ x : Z * Z | fst x = p }, a subset of Z*Z. (symmetrically, there exists a towards_infinity_Zx p filter for
any p). towards_infinity_xZ p let the second component of pairs of the domain go to infinity, while
the first component is (by definition) fixed and equal to p. By quantifying universally on p we get
what we want: we are able to fix p to any value afterwards, and still have the second component
growing to infinity.

The fact that we could not use SpecO to write our auxiliary specification is a bit confusing at
first. It is however the only way to express what we wanted: the inductive proof of lookup_spec_ind
requires an induction hypothesis generic in p, so we cannot quantify over p before CFSpecO. We cannot
quantify over different p in the definition of the filter either, as we want to eventually fix it: the second
component must be able to go to infinity for a given, fixed p.

5 Related Work

There is a relatively extensive literature on (semi-)automatic inference of big-O complexity bounds.
The Resource Aware ML project (RAML) takes the approach of a type system denoting resource
usage (time and space resources): Hofmann and Jost [11] describe automatic inference of linear
bounds for higher-order functional programs, a work extended by Hoffmann and Hofmann [10] to
handle amortized polynomial bounds, though for first-order programs only. In a recent work, Danner,
Licata and Ramyaa [8] present a framework where big-O bounds for higher-order functional programs
can be automatically deduced, for programs defined over an inductive datatype. Asymptotic bounds
are expressed depending on a programmer-specified notion of size of the given datatype. As these
frameworks focus on automation, they are limited in the bounds they can infer and the programs
they can analyze.

In the same line of work as CFML extended with credits [5], where a proof assistant is used
to enable proving arbitrarily complex specifications, Danielsson’s Thunk library [7] allows proving
amortized time bounds for lazy Agda programs expressed in a cost monad, with a symmetric concept
of debits. However, cost annotations are also explicit, and do not use big-O notation.

The Coquelicot Coq real analysis library [1] formalizes Landau’s small-o notation using filters,
however their scope is restricted to real analysis functions. We believe that we are the first to combine
a formalization of Landau’s asymptotic notation and a program verification framework, in order to
prove asymptotic bounds with big-Os for arbitrarily complex programs.

6 Conclusion

This internship was very interesting, and the people of the Gallium team very nice, as always. I’m
looking forward to continuing working on this topic!

21

References

1. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A User-Friendly Library of Real Analysis for Coq.
Mathematics in Computer Science p. 22 (Jun 2014)

2. Charguéraud, A.: Characteristic formulae for the verification of imperative programs. In: International
Conference on Functional Programming (ICFP). pp. 418–430 (2011)

3. Charguéraud, A.: Characteristic formulae for the verification of imperative programs (2012), to appear
in HOSC

4. Charguéraud, A.: Characteristic Formulae for Mechanized Program Verification. Ph.D. thesis, Université
Paris 7 (2010)

5. Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and amortized complexity
of an efficient union-find implementation. In: Proceedings of the 6th Conference on Interactive Theorem
Proving (ITP 2015). Lecture Notes in Computer Science, Springer (Aug 2015)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms (Third Edition). MIT
Press (2009)

7. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely functional data structures.
In: Principles of Programming Languages (POPL) (2008)

8. Danner, N., Licata, D.R., Ramyaa, R.: Denotational cost semantics for functional languages with inductive
types. CoRR abs/1506.01949 (2015)

9. Drmota, M., Szpankowski, W.: A master theorem for discrete divide and conquer recurrences. J. ACM
60(3), 16:1–16:49 (Jun 2013)

10. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial potential. In: European Sym-
posium on Programming (ESOP). Lecture Notes in Computer Science, vol. 6012, pp. 287–306. Springer
(2010)

11. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In:
Principles of Programming Languages (POPL). pp. 185–197 (2003)

12. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press (1999)
13. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Logic in Computer

Science (LICS). pp. 55–74 (2002)

https://hal.inria.fr/hal-00860648
http://www.chargueraud.org/research/2011/cfml/main.pdf
http://www.chargueraud.org/research/2013/cf/cf.pdf
http://www.chargueraud.org/arthur/research/2010/thesis/
http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://arxiv.org/abs/1506.01949
http://arxiv.org/abs/1506.01949
http://doi.acm.org/10.1145/2487241.2487242
http://www.cs.yale.edu/homes/hoffmann/papers/aapoly_conference.pdf
http://www2.tcs.ifi.lmu.de/~jost/research/POPL_2003_Jost_Hofmann.pdf
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504
http://www.cs.cmu.edu/~jcr/seplogic.pdf

22

7 Annex of figures

Lemma incr_spec :
Spec incr r |R>> @(i: int),
R (r i) (# r (i+1)).

Proof.
xcf. intros.
xapps. xapp. hsimpl.

Qed.

Fig. 1. Specification and proof for incr

Lemma mktree_spec :
SpecO (fun n ñ 2 ^ n) (fun F ñ
Spec mktree (depth: int) (x: a) |R>>
0 ď depth Ñ
R ($ F depth) (fun (t: tree a) ñ [])).

Proof.
applys @SpecO_of_SpecO_after 0.
xcfO (fun n ñ 2 ^ (n + 1) ´ 1).
´ intros. forwards̃ : pow2_pos (x+1).
´ idominated_Z_autõ . exists̃ 0. monotonic_Z_auto.
´ intros F’ eqF’.
xinduction (fun (depth: int) (x: a) ñ Z.to_nat depth).
xcf. intros depth x spec_ind depth_pos. rewrites̃ eqF’.
forwards̃ : pow2_pos depth.
xpay. csimpl. rew_pow̃ 2 depth.
xif. xret. csimpl.
xapps̃ ; try rewrites̃ eqF’. math_lia. csimpl; rew_pow̃ 2 depth.
xapps̃ ; try rewrites̃ eqF’. math_lia. csimpl; rew_pow̃ 2 depth.
xret. csimpl.

Qed.

Fig. 2. Proof of asymptotic complexity for mktree

23

Proof.
destruct link_spec as (link_cost & link_cost_nonneg & ? & ?).
applys @SpecO_of_SpecO_after 0.
specialize (link_cost_nonneg tt). (* Help the automated tactics. *)
xcfO (fun n ñ 1 + (1 + (link_cost tt)) * n).
intros F’ eqF’.
xinduction (fun (t:tree a) (ts:rlist a) ñ LibList.length ts).
xcf. intros ? ts. introv IH Rt Rts. rewrites̃ FeqF’.
inverts Rts.
´ xpay. csimpl. xgo; hsimpl; constructors̃ .
´ { xpay. csimpl. simpl_nonneg̃ .

xmatch.
´ xret; hsimpl; constructors̃ ; subst; splits̃ .
´ unpack; subst. xapps̃ .

{ csimpl. rew_length. math_nia. }
intros. xapps̃ .
{ rewrites̃ FeqF’. csimpl; rew_length; math_nia. }
intros. xret.
{ hsimpl. constructors̃ . rew_list̃ . } }

Qed.

Fig. 3. Specification and proof for cons_tree

	Formal Verification of Asymptotic Complexity Bounds for OCaml Programs

